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Chapter 20

Understanding spatial variability and its application

to biogeochemistry analysis

Sabine Grunwald, Rosanna L. Rivero and K. Ramesh Reddy

Abstract

Transforming the conceptual ideas of biogeochemical cycling into
spatially explicit context has been hampered by ecosystem complex-
ity, multiple nested levels of interrelated physical, biological and
chemical processes, and the lack of sufficient quantitative data. The
mosaic of ecosystem structures and functions distributed across
a landscape represent the combined effects and interactions of a
variety of biotic and abiotic factors. As a result, existing landscape
patterns implicitly contain information about the processes that
generated these patterns. Deductive science has generated extensive
knowledge of how individual parts of aquatic ecosystem’s function
derived from site-specific studies. Yet, understanding of how the
parts interact as a whole requires a holistic perspective that considers
the spatial variability, distribution and interaction of all components
of a landscape. The predicament entailed by the complexity of
aquatic ecosystems requires a synergistic approach that integrates
knowledge from different disciplines including biogeochemistry,
geography, statistics/geostatistics, ecology, hydrology and others.
Interdisciplinary collaboration will be key to reconcile deductive and
inductive science and allow us to understand the linkages between
biogeochemical properties and processes at landscape scale. In this
chapter we provide an overview of a variety of geostatistical and
hybrid methods that can be used to characterize the spatial varia-
bility, distribution and uncertainty of biogeochemical properties.
A case study demonstrates the application of these methods
to predict soil total phosphorus across a wetland in the Greater
Everglades.
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20.1. Introduction

Conceptually, scale represents the window of perception, the filter, or the
measuring tool through which a landscape may be viewed or perceived
(Levin, 1992). Thus, changing the scale changes the properties that we
observe—the patterns of reality, which has implications for understand-
ing the dynamics of any environmental system. Since parameters and
processes important at one scale are frequently not important or predic-
tive at another, it is essential to gain a better understanding of the spatial
variability and distribution of ecosystem properties. Turner et al. (1989)
pointed out that ecological problems often require the upscaling of fine-
scale measurements for the analysis of coarse-scale phenomena. A holistic
view of landscapes is required to understand ecosystem processes at mi-
cro, meso and macro spatial scales.

Biogeochemistry is defined as the scientific study of the interactions
among the biological, geological and chemical systems of Earth, including
the cycling of matter and energy through them. Numerous conceptual
models have been developed that describe the cycling of matter and
material in aquatic ecosystems (Mitsch and Gosselink, 2000). The carbon
(C), nitrogen (N), phosphorus (P) cycles play a critical role in the func-
tioning of wetland ecosystems, their structure, resilience and sensitivity to
natural and human-induced disturbances.

In this chapter we discuss the importance of spatially explicit mapping
of biogeochemical properties that applies to aquatic and terrestrial
ecosystems in the context of spatial autocorrelation and covariation of
these properties. Understanding the spatial variability and distribution
of biogeochemical properties is a necessity for holistic assessment of
environmental quality at landscape-scale.
20.2. Concepts and methods

The mosaic of system structures and functions distributed across a land-
scape represent the combined effects and interactions of a variety of biotic
and abiotic factors. As a result, existing landscape patterns implicitly
contain information about the processes that generated these patterns
(Holling and Gunderson, 2002). Spatial and temporal ecosystem at-
tributes are neither uniform nor scale independent. Likewise, biogeo-
chemical properties and processes vary gradually and continuously in
space and time. Discrete boundaries that cause abrupt shifts from high to
low values of physico-chemical and biological properties are limited
to crisp physical boundaries (e.g., hydrologic boundaries, land use) or
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anthropogenic disturbances. To restrict observations to few sites
(e.g., along a transect) limits the ability to capture the biogeochemical
signatures of a landscape.

Some biogeochemical properties are labor-intensive and costly to
derive (e.g., phosphorus fractionation schemes, alkaline phosphatase
activity) whereas other measurements are standard routine (e.g., bulk
density, total phosphorus—TP). Hence, in the past, numerous studies
focused on sparse spatially distributed sampling or experimental lab/field
studies to understand biogeochemical cycling (Reddy et al., 1998; White
and Reddy, 2000; Fisher and Reddy, 2001; Craft and Chiang, 2002;
Karathanasis et al., 2003; Morris et al., 2004) resulting in a tremendous
amount of knowledge. The strength of such site-specific studies is to
describe feedback processes in response to a localized change in biogeo-
chemical conditions. For example, changing plant communities provide
feedback on soil biogeochemical properties and microbial communities
that respond to changing environmental conditions (e.g., organic matter,
hydroperiod, temperature, light, etc.). Numerous site-specific studies have
ignored the spatial interrelationships, i.e., the spatial covariation, among
different biogeochemical properties and assume independence of observa-
tions. Deductive science has generated extensive knowledge of how indi-
vidual parts of aquatic ecosystems function (compare Eq. (1)). Yet,
understanding of how the parts interact as a whole requires a holistic
perspective that considers the spatial interaction of all components of a
landscape. Transforming the conceptual ideas of biogeochemical properties
and processes into spatially explicit context has been hampered by eco-
system complexity, multiple nested levels of interrelated physical, biological
and chemical processes, and the lack of sufficient quantitative data.

yðxiÞ ¼ f fzjðxiÞg (1)

where y(xi) is the response variable observed at location xi and zj(xi) the
biogeochemical properties (j ¼ 1, 2, 3,y, n) observed at location xi.

20.2.1. The concept of spatial autocorrelation

The deductive approach is rooted in the concept developed by Fisher
(1925), who pointed out the importance of random selection ensuring that
estimates are unbiased. This assumption of independence is a prerequisite
for many statistical tests including regression analysis, analysis of var-
iance, t-tests and others (Berthouex and Brown, 2002). Classical statistical
methods have been used extensively to document significant differences in
biogeochemical properties/behavior using controlled experiments (e.g.,
mesocosms), plots, or blocks. Such analyses are based on the assumption
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that the investigated properties show no spatial autocorrelation. Spatial
autocorrelation is a term referring to the degree of relationship that exists
between two or more spatial variables, such that when one changes, the
other(s) also change (Webster and Oliver, 2001). This change can either
be in the same direction, which is a positive autocorrelation, or in the
opposite direction, which is a negative autocorrelation (Burrough, 1986;
Isaaks and Srivastava, 1989). Popular measures of spatial autocorrelation
are Moran’s I (Moran, 1950) and Geary’s C (Geary, 1954) coefficients.
Positive values of Moran I and value smaller than 1 for Geary’s C
coefficient correspond to positive autocorrelation. True spatial independ-
ence of properties in aquatic and terrestrial landscapes does not really
exist due to the interconnectedness of biogeochemical processes of N, C
and P and other nutrients and transport processes that move water,
material and energy through the ecosystem. Rather, the sampling density
and spacing between observations determine if the underlying spatial
autocorrelation can be captured by a model or not. Studies that limit
observations to sparse sampling locations far apart from each other ig-
nore spatial autocorrelation and focus on the identification of significant
differences between sites with contrasting biogeochemical conditions.
However, numerous studies documented that spatial autocorrelation of
biogeochemical soil properties is inherent at landscape scale [>1 km2]
(Newman et al., 1997; DeBusk et al., 2001; Grunwald et al., 2004, 2006;
Bruland and Richardson, 2005). To identify spatial autocorrelation of a
specific biogeochemical property, observations need to be collected with a
spatially distributed design throughout an ecosystem that accounts for
short-, medium- and long-range variability. Constraining biogeochemical
observations to few point locations (sites) cannot possibly explain the
underlying spatial autocorrelation of properties as well as interrelation-
ships between different biogeochemical properties (e.g., TP and labile P),
which is called the spatial covariation. The predicament entailed by the
complexity of aquatic and terrestrial ecosystems requires a synergistic
approach integrating knowledge from different disciplines including
biogeochemistry, geography, statistics/geostatistics, ecology, hydrology
and others. Interdisciplinary collaboration will be key to reconcile de-
ductive and inductive science to understand the linkages between prop-
erties and processes at landscape scale. Each soil biogeochemical property
exhibits specific behavior of spatial autocorrelation that is related to
environmental factors such as nutrient cycling, hydrology, topography,
anthropogenic-induced nutrient inputs, vegetation types, etc. and spatial
scale. For example, TP showed long-range correlation lengths across
the Water Conservation Area-2A (WCA-2A), a wetland in the northern
Everglades, in 1990 and 1998 with spatial autocorrelations of 6500 and



Understanding Spatial Variability and its Application 439
7549m, respectively (Grunwald et al., 2004). Similar long-range spatial
autocorrelation for TP was found in the Blue Cypress Marsh Conser-
vation Area, a wetland in eastern Florida, with 7240m (Grunwald et al.,
2006).

20.2.2. The concept of regionalized variable theory

We can formalize the concept of spatial variation outlined above using
the theory of regionalized variables (Webster and Oliver, 2001). Since the
environment and its component attributes result from many interactive
physical, chemical and biological processes that are non-linear and/or
chaotic, the outcome is so complex that the variation appears to be ran-
dom. If we adopt a stochastic view then at each point in geographic space
there is not just one value for an attribute but a whole set of values.
Consider a region R that comprises an infinite number of points xi, i ¼ 1,
2, y, N. Whereas in the classical statistical approach the values of an
observed biogeochemical attribute, z, at these points constitute the pop-
ulation, in the geostatistical approach this population is assumed to be
just one realization of a random process or random function that could
generate any number of such populations. Then, at each place x0 the
attribute is considered a random variable Z(x0). Thus, at a location x0 a
biogeochemical attribute is treated as a random variable with mean (m),
a variance (s2) and a cumulative distribution function (cdf). Note, that
the actual value z(x0) is just one drawn at random from that distribution.
The set of random variables, Z(x1), Z(x2), yZ(xn) constitute a random
function or a stochastic process (Webster and Oliver, 2001). Regionalized
variable theory assumes that the spatial variation of any biogeochemical
variable can be expressed as the sum of three major components (Eq. (2))
(Burrough and McDonnell, 1998): (i) a structural component having a
constant mean or trend that is spatially dependent, (ii) a random, but
spatially correlated component, known as the variation of the regional-
ized variable and (iii) a spatially uncorrelated random noise or residual
term. A non-stationary trend extends over the whole study area and is
therefore called a global model. In contrast, local trends, also called drift,
describe localized variation (Webster and Oliver, 2001). [Note: a header
‘‘Ẑ’’ indicates that the variable is estimated]

ẐðxiÞ ¼ mðxiÞ þ �0ðxiÞ þ �00 (2)

where ẐðxiÞ is the value of a random variable at locations xi with i ¼ 1,
2,y, n; m(xi) the trend model—deterministic function describing the
‘‘structural’’ component of ẐðxiÞ; e0(xi) the stochastic, locally varying but
spatially dependent component (the regionalized variable); e00 the A
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residual, spatially independent noise term having zero mean and variance;
and xi the geographic position in 1, 2 or 3 dimensions.

Observations obtained close to each other are more likely to be similar
than observations taken further apart from each other. This spatial cor-
relation of e0(xi) is described by the semivariance ĝðhÞ (Eq. (3)). If g is
plotted as a function of the lag distance h that separates xi and xi+h, the
semivariogram is obtained. One implicit assumption is that the mean,
variance and covariance depend only on the separation distance h and
not on the absolute position. This assumption constitutes second-order
stationarity (Isaaks and Srivastava, 1989). ĝðhÞ is estimated as

ĝðhÞ ¼
1

2NðhÞ

XNðhÞ

i¼1

½zuðxiÞ � zuðxi þ hÞ�2 (3)

where ĝðhÞ is the semivariance at lag h; h the distance between data pairs
(zu(xi) – zu(xi+h)) (or lag); N the total number of data pairs (zu(xi) –
zu(xi+h)); and zu(xi) the biogeochemical variable u.

Commonly, least square fitting of the experimental semivariogram
model is used. However, visual inspection of the statistical fitting process
is essential. Alternatively, interactive fitting can be used to model the
semivariogram. Characteristic parameters that can be derived from semi-
variograms are the nugget, sill and range. The nugget describes the meas-
urement error and fine-scale variability. Semivariograms of properties or
processes that exhibit second-order stationarity reach upper bounds at
which they remain after their initial increases. This upper bound, or
maximum is known as the sill. The range describes the spatial autocor-
relation and marks the limit of spatial dependence (Webster and Oliver,
2001). The univariate semivariance can be extended to consider two
biogeochemical variables, zu and zv, to derive the cross-semivariances
ĝuvðhÞ:

ĝuvðhÞ ¼
1

2NðhÞ

XNðhÞ

i¼1

½zuðxiÞ � zuðxi þ hÞ�½zvðxiÞ � zvðxi þ hÞ� (4)

Regionalized variable theory and semivariogram analyses are described
in detail by Goovaerts (1997), Chilès and Delfiner (1999), Webster and
Oliver (2001, 2005). The semivariogram provides input for kriging, which
is a weighted interpolation technique to create continuous prediction
maps of biogeochemical properties. Major limitations of the univariate
geostatistical technique of kriging are due to the assumption of station-
arity, which is often not met by the field-sampled datasets and the large
amount of data (>100 observations; recommended >150 observations)
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required to characterize the spatial autocorrelation of a property
(Webster and Oliver, 2001).

20.2.3. Global models

Global models use all available observations to provide predictions for
the whole area of interest, while local interpolators operate within a small
zone around the point being interpolated to ensure that estimates are
made only with data from locations in the immediate neighborhood
(Burrough and McDonnell, 1998). Trend surfaces are the simplest global,
geospatial model that requires fitting some form of polynomial equation
through biogeochemical attribute values. These are least square methods
that model the long-range spatial variation. Such models assume that the
spatial coordinates are the independent variables and z (attribute of
interest) is the dependent variable (Webster, 1994). As trend surfaces are
simplified representations of reality, it is difficult to ascribe any physical
meaning to complex, higher-order polynomials. Therefore, the main use
of trend surface analysis is not as an interpolator, but as a way of
removing broad features of the data prior to using some complex
local interpolator. The concept is based on partitioning the variance
between trend and the residuals from the trend. Compare Eq. (2) that
partitions the variability of a property into (i) a global trend component,
(ii) stochastic, locally varying but spatially dependent component and
(iii) a residual noise term.

20.2.4. Local models

Local, deterministic interpolation methods focus on modeling short-
range local variations. The interpolation involves: (i) defining a search
neighborhood around the point to be interpolated, (ii) finding the
observations within this neighborhood, (iii) choosing a mathematical
function to represent the variation over this limited number of points or
area, and (iv) evaluating it for the point on a regular grid. The procedure
is repeated until all the points on a grid have been computed (Burrough
and McDonnell, 1998). For example, commonly used local interpolation
methods are inverse distance weighting (IDW), splines and kriging
(Burrough and McDonnell, 1998). Splines (local fitting functions) esti-
mate values using a mathematical function that minimizes overall surface
curvature, resulting in a smooth surface that passes exactly through the
observation points, while at the same time ensuring that the joins between
one part of the curve (or surface) and another are continuous. In contrast
to trend surfaces and weighted averages, splines retain small-scale
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features. A disadvantage of splines and IDW is that there are no direct
estimates of the errors associated with these forms of interpolation
(Burrough and McDonnell, 1998). Local interpolators in its simplest
form are based weights that are computed from a linear function of
distance between sets of data points and the point to be predicted (Eq. (5)).

Ẑðx0Þ ¼
Xn

i¼1

li � zðxiÞ
Xn

i¼1

li ¼ 1 (5)

where Ẑðx0Þis the predicted attribute value at unsampled location x0; li the
weights; z(xi) the observed attribute value at locations xi; and n the number
of observations.

In Eq. (5) z(x1), z(x2), y z(xn) are the measured values of the biogeo-
chemical property z at locations x1, x2, y, xn and li are the weights that
sum to 1 to assure unbiasedness. The expected error is E½Ẑðx0Þ �

Zðx0Þ� ¼ 0 and the prediction variance is

var½Ẑðx0Þ� ¼ E½fẐðx0Þ � Zðx0Þg
2�

¼ 2
XN

i¼1

ligðxi;x0Þ �
XN

i¼1

XN

j¼1

liljgðxi; xjÞ ð6Þ

where gðxi; x0Þ is the semivariance of Z between the ith sampling point
and the target point x0 at an unsampled location and gðxi; xjÞ the semi-
variance of Z between sampling points xi and xj.

20.2.5. Kriging

Kriging is a generic term adopted by geostatisticians for a family of
generalized least-squares regression algorithms. In the kriging system
the goal is to minimize the kriging variance, where the weights sum to 0
(Eq. (7)).

Xn

i¼1

liðxi; xjÞ � cðx0Þ with
Xn

i¼1

li ¼ 0 (7)

where cðx0Þ is the Lagrange multiplier.
All kriging estimators are but variants of the basic linear regression

estimator Ẑðx0Þ defined as

Ẑðx0Þ �mðx0Þ ¼
Xn

i¼1

liðx0Þ½ZðxiÞ �mðxiÞ� (8)

where Ẑðx0Þ is the linear regression estimator at unsampled location x0
and liðx0Þ the weights assigned to datum x0 interpreted as a realization of
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the random variable Z(xi) and located within a given neighborhood W(x)
centered on x.

The weights are chosen to minimize the error variance s2ðx0Þ ¼
varfẐðx0Þ � Zðx0Þg under the constraint of unbiasedness of the estimator.
These weights are obtained by solving simultaneously a system of linear
equations which is known as the kriging system (Goovaerts, 1999).

The local neighborhood characteristics including (i) the number of
observations (z(xi)) within a neighborhood, (ii) major and minor semiaxis
(size of the neighborhood) and (iii) the neighborhood shape (uniform
or discretized into subunits) determine the strengths of smoothing.
In general, a small neighborhood generates localized predictions based on
few observations, which are prone to the influence of extreme values
producing blocky/crisp looking maps. In contrast, large neighborhoods
smooth over a larger area providing conservative predictions for areas
with high observed values.

20.2.6. Kriging variants

Differences in kriging variants reside in the model considered for the
trend m(x) (Goovaerts, 1999):
(a)
 Simple kriging (SK) considers the mean m(x) known and constant
throughout the study area.
(b)
 Ordinary kriging (OK) accounts for local fluctuations of the mean
by limiting the domain of stationarity of the mean to the local neigh-
borhood (W(x)). The mean is considered constant but unknown.
(c)
 Universal kriging (UK), also known as kriging with a trend model,
considers that the unknown local mean m(x0) smoothly varies within
each local neighborhood, and the trend is modeled as a linear com-
bination of functions fk(x) of the coordinates

mðx0Þ ¼
XK

k¼0

akðx
0Þf kðx

0Þ (9)

with ak(x
0) constant within each local neighborhood W(x) but

unknown.

(d)
 Regression kriging (RK): Alternatively, the trend function m(x) can be

modeled separately, where kriging is combined with regression or a
regression variant (Odeh et al., 1994, 1995; Odeh and McBratney,
2000; Hengl et al., 2004). The deterministic component m(x) is
considered dependent on some exogenous factors such as climate,
hydrology, topography, vegetation or other environmental factors
that can be described via multivariate regression, Generalized Linear
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Models, Classification and Regression Trees, Generalized Additive
Models or other functions. Odeh et al. (1994, 1995) defines regression
kriging where model f(.) is used to describe the relationship between
predictors and environmental factors:

ẐðxiÞ ¼ f ðQ;xiÞ þ R̂ðxiÞ (10)

where f(Q, xi) is the function describing the structural component
of ẐðxiÞas a function of Q environmental variables at location xi;
R̂ðxiÞ the stochastic, locally varying but spatially dependent residual
from f(Q, xi). In RK, the target biogeochemical property at an un-
visited site is first predicted by f(.), followed by kriging of the residuals
of the model.
(e)
 Kriging with an external drift (KED) models the trend m(x) as a linear
function of a smoothly varying secondary (external) variable y(x)
instead of a function of the spatial coordinates. Besides the difficult
inference of the residual semivariogram, this method requires that the
relation between the primary trend and secondary variable is linear
and makes physical sense (Goovaerts, 1999). In KED the secondary
exhaustive data are only used to inform on the shape of the trend of
the primary variable. In contrast, cokriging exploits more fully the
secondary information by directly incorporating the values of the
secondary variable and measuring the degree of spatial association
with the primary variable through the cross-semivariogram. Cokri-
ging is the extension of ordinary kriging of a single variable to two or
more variables. There must be some kind of coregionalization among
the variables for it to be profitable. It is particularly useful if some
property that is cheap to measure (e.g., remote sensing image)
is spatially correlated with another property that is expensive to
measure and/or labor intensive to collect and available at few sites
(Webster and Oliver, 2001).
In many environmental applications a few hot spots (high values)
coexist with many small values that vary continuously in space. Depend-
ing on whether large values are clustered or scattered in space, our phys-
ical interpretation of the biogeochemical processes controlling high and
low values may change. The characterization of the spatial distribution of
z-values above or below a given threshold value zk requires prior coding
of each observation as an indicator datum ind (xi; zk) defined as
(Goovaerts, 1999):

indðxi; zkÞ ¼ 1 if zðxiÞ � zk

¼ 0 otherwise ð11Þ
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Indicator semivariograms can be computed by substituting indicator data
ind (xi; zk) for z-data:

ĝðh; zkÞ ¼
1

2NðhÞ

XNðhÞ

i¼1

½indðxi; zkÞ � indðxi þ h; zkÞ�
2 (12)

The indicator variogram value ĝðh; zkÞ measures how often two z-values
separated by a vector h are on opposite sides of the threshold value zk.

20.2.7. Spatial stochastic simulations

Least-square interpolation algorithms such as kriging tend to smooth out
local details of the spatial variation of the attribute, with small values
typically overestimated and large values underestimated (Isaaks and
Srivastava, 1989). This is a serious shortcoming if large pollutant con-
centrations or biogeochemical property values are of interest.Kriging
aims at local accuracy through minimizing a covariance-based error
variance, while spatial stochastic simulation aims at reproducing spatial
structure through a covariance model. Unlike kriging, spatial conditional
stochastic simulations do not aim at minimizing a local error variance but
focus on the reproduction of statistics such as the sample histogram or
the semivariogram model in addition to honoring of data values. The
output results, i.e., a set of alternative realizations, provide a visual and
quantitative measure of the spatial uncertainty. A probability distribution
(ccdf) for attributes at a particular location can be built for a set of
multiple realizations of the joint distribution of attribute values in space
(Goovaerts, 1997). Kriging produces one output map. In contrast, stoc-
hastic simulation generates multiple realizations of the spatial distribu-
tion of (biogeochemical) attribute values and it uses differences among
simulated maps as a measure of uncertainty. Therefore, kriging is pre-
ferred for local estimation whereas simulation is increasingly preferred
for assessment of spatial uncertainty and reproduction of global statistics,
risk assessment, flow modeling and water quality simulation modeling
(Goovaerts, 1997; Grunwald et al., 2004; Chilès and Allard, 2005). The
latter situations require knowledge about the uncertainty of environmen-
tal attribute values at many locations simultaneously (multiple-point or
spatial uncertainty).

Conditional Sequential Gaussian Simulation (CSGS) is a stochastic
simulation method for the generation of partial realizations using normal
random functions. The method uses the Gaussian model type and is
ergodic, which means that simulations have a sample mean close to the
theoretical mean and a sample covariance to the theoretical covariance



Sabine Grunwald et al.446
C(h). This implies that all simulations are drawn from the realizations of a
random function that is ergodic in the mean value and the covariance
(second-order ergodicity) (Chilès and Delfiner, 1999). Conditioning is the
operation that ensures that simulation values match values at sample
points. Conditional Sequential Gaussian Simulation provides a measure
of local uncertainty because each conditional cdf relates to a single spatial
location x.
20.2.8. Summary

A flow chart that provides an overview of statistical, geostatistical and
hybrid geospatial modeling techniques presented above is shown in
Fig. 20.1. Depending on the spatial autocorrelation and the spatial
covariation, different methods are suggested to generate the best possible
predictions of biogeochemical properties within a given aquatic ecosys-
tem. Many variations of these methods exist that can be further explored
in Goovaerts (1997), Webster and Oliver (2001, 2005), McBratney et al.
(2000, 2003) and Grunwald (2005).
20.3. Case study

In this case study we illustrate the concepts and methods outlined above
to characterize spatial variability of TP within a subtropical wetland,
WCA-2A, located in the Greater Everglades, Florida. The Everglades is a
naturally P-limited aquatic ecosystem that has been impacted by nutrient
inputs from agricultural land use over the last decades (Noe et al., 2001).
In addition, this system has been manipulated hydrologically (canals,
levees, hydrologic control structures) altering the historic uninterrupted
sheet flow through the whole system (Porter and Porter, 2002). Water
Conservation Area-2A is 418 km2 in size consisting primarily of Histosols
(soils with at least 12–18% organic C by weight), which developed during
the past 5000 years (McCollum et al., 1976). Vegetative communities are
dominated by sawgrass (Cladium jamaciense Crantz), cattail (Typha spp.),
mixed sawgrass and cattail communities and few tree islands (Porter and
Porter, 2002). The wetland is surrounded by canals and levees with two
major surface water inflow points (S-7 and S-10 pump stations). Water
moves through WCA-2A as sheet flow from the north-east to the outflow
located south (DeBusk, 2001). Elevated soil P concentration in WCA-2A
has been strongly linked to productivity and community structure of
macrophytes (McCormick et al., 2002).
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In 2003, we collected soil samples at 0–10 cm depth at 111 sites based
on a stratified random sampling design, spatially distributed throughout
WCA-2A that were analyzed for TP. Strata were derived using historic
ecological data layers such as the Normalized Difference Vegetation
Index as a proxy for vegetative communities, as well as soil and hydro-
logic data. The sampling design was optimized to account for short-,
medium- and long-range variability of attributes. A map that shows the
distribution of soil observations is shown in Fig. 20.2. Total P was
measured with a dry ashing procedure (Anderson, 1976) followed by
determination with an automated colorimetric procedure (U.S. Environ-
mental Protection Agency, 1993, Method 365.1). We complemented the
soil dataset with an exhaustive ancillary dataset derived from Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
satellite image. The ASTER sensor covers a wide spectral range and high
spatial and radiometric resolutions. The spectral region is covered by
three telescopes, three Visible and Near Infrared Radiometer (VNIR)
bands with a spatial resolution of 15m, six Short Wave Infrared
Radiometer (SWIR) bands with a spatial resolution of 30m and five
thermal Infrared Radiometer (TIR) bands with a spatial resolution of
Statistical properties
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Figure 20.2. Observations of total phosphorus (TP) at 0–10 cm depth measured at 111

locations across WCA-2A.
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90m (Abrams et al., 2002). For the purpose of this study, we used
ASTER bands 2 and 3 (red and near-infrared) from the VNIR spectral
region in order to calculate the Normalized Difference Vegetation Index
(NDVI) (Rouse et al., 1974), which is slightly different when compared to
the NDVI derived from Landsat satellite images that use bands 3 and 4.

Descriptive statistics of TP are enclosed in Fig. 20.2 and indicate a
positively skewed distribution with a skewness coefficient of 1.3, mean of
550, median of 432, minimum of 155 and maximum of 1702mg kg�1. To
predict TP across the WCA-2A we used completely regularized splines
with different neighborhood options (Fig. 20.3). The spline map in
Fig. 20.3c shows the smoothing effect of using a large local neighborhood
with 15 observations (minimum of 5) to predict TP at unsampled loca-
tions. In contrast, spline map 1 (Fig. 20.3a) shows blocky spatial patterns
due to the small local neighborhood with few (6) observations (minimum
of 2) that contributed to the predictions of TP at unsampled locations.
The mean prediction error for was lowest for spline map 2 with 0.4688,
followed by spline map 3 with �3.631 and spline map 1 with �4.598.
The RMSE was similar for spline map 3 with 252 and spline map 2 with
253 and highest for spline map 1 with 293. Here, a heuristic approach
was used to identify the interpolation method that showed the lowest
prediction errors.

To explore the spatial autocorrelation of TP, h-scattergrams and semi-
variograms were generated (Fig. 20.4). Just as the scattergram is a plot of
all pairs of values related to two different attributes measured at the same
location, the h-scattergram is a plot of all pairs of measurements (z(xi),
z(xi+h)) on the same attribute z at locations separated by a given dis-
tance h in a particular direction. A perfect correlation would entail that
all points in the h-scatter diagram lie on the line of equal values. As seen
in Fig. 20.4, the spread of the points indicated the variability of TP
values. The increasing inflation of the cloud in all h-scattergrams com-
puted in four different directions reflected the increasing dissimilarity
between observations farther apart. Overall, no distinct different patterns
in the directional h-scatter diagram were found indicating isotropic
spatial distributions. Isotropic means that the spatial patterns are the
same/similar in different directions.

Because the TP data were non-Gaussian we transformed TP values
with a log transformation to approximate a normal distribution. The
omnidirectional experimental semivariogram of log TP is shown in
Fig. 20.4b that was fitted with an exponential model with a nugget of
0.0185, sill 0.0512 and range of 7468m. At the range the spatial auto-
correlation becomes 0 indicating that this separation distance h marks the
limit of spatial dependence. Observations taken further apart than the
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Figure 20.3. Predictions of TP derived from Completely Regularized Splines with different local neighborhood options.
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range are spatially independent. Experimental semivariograms were com-
puted using Eq. (3) in four directions (0, 45, 90 and 1351) to reveal
anisotropy in the variation. Anisotropy describes directional spatial
structures. Due to the limited amount of data pairs available for different
directions it was difficult to identify any clear directional trends.
Although there is a hydraulic gradient in WCA-2A that extends from
the northeastern canal into the west-south direction we could not confirm
these trends in the soil TP dataset. Therefore, we proceeded with the
omnidirectional fitted semivariogram model. We used a search neigh-
borhood of 7468m; 1 angular sector; a minimum number of observations
of 4 and an optimum number of observations of 10 to predict TP at
unsampled locations using OK. The OK prediction map is shown in
Fig. 20.5. Based on cross-validation the mean prediction error was
�41.77 indicating a slight underestimation of true observations and
a root mean square prediction error of 257mg kg�1. The coefficient of
determination (R2) between measured TP and estimated TP was 0.82
indicating good predictions. To highlight differences between TP
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Figure 20.5. Predictions of TP based on Ordinary Kriging.
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predictions derived from our spatially distributed observations and
observations along a linear corridor (transect) we created a subset of
observations extending along a previously identified TP gradient (Reddy
et al., 1997; DeBusk et al., 2001). The corridor extended from the
hydrologic boundary in the east into the interior of the marsh to the
south-west boundary (Fig. 20.6a). Total phosphorus observations were
predicted based on 10 observations along the linear corridor using OK.
We derived a difference map by subtracting the TP predictions made
along the linear corridor from the TP predictions derived from the spa-
tially distributed design (Fig. 20.6b). The difference map shows deviations
of more than �240 up to 180mgkg�1 TP illustrating the large differences
between both prediction maps. This example illustrates the limitations of
sparse biogeochemical datasets based on only 10 observations along a
corridor. Sparse datasets along corridors/transects have major limitations
to map the underlying spatial variability. In the eastern part of WCA-2A,
low TP values (328 and 380mg kg�1) coexisted with very high TP values
(1259mgkg�1) in close proximity (Fig. 20.6b). In contrast, over large
distances from the interior of the marsh to the south-west hydrologic
boundary, TP values were relatively invariant at different lags ranging
from 257 to 371mgkg�1 TP.

Prediction maps are valuable to characterize the spatial distribution and
variability of biogeochemical properties such as TP. However, to assess
the impact of biogeochemical properties exceeding thresholds that stim-
ulate net productivity and turnover rates is important to characterize the
ecological integrity and structure of an ecosystem. Thus, we used IK to
derive the probabilities of TP being above a respective cutoff value (zk) of
450, 500, 550, 600, 650 and 700mgkg�1 (Fig. 20.7). For reference pur-
poses, historical background TP concentrations in WCA-2A have been
estimated to be 500mgkg�1 (DeBusk et al., 2001). Probability maps are
well suited for decision makers demonstrating the outcome ranging from
conservative assumptions (low threshold value) to liberal assumptions
(high threshold value). Hot spots can be well identified using IK high-
lighting the extreme values that exceed the background concentrations.

Stochastic simulations emphasize the uncertainty associated with pre-
dictions of biogeochemical properties generating hundreds or thousands
of realizations. We used CSGS to generate 100 realizations of TP
(Fig. 20.8) using the following modeling options: dilation radius of 20 in
the x and y direction; 15 maximum number of data nodes; and 5 max-
imum number of simulation nodes. The E-type map of the mean showed
similar patterns of TP as seen on the OK prediction map. However, the
TP patterns in Fig. 20.8 were much more speckled when compared to the
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smooth OK prediction map. The uncertainty of TP predictions based on
CSGS was expressed using minimum and maximum realization maps that
show the range of realizations and the standard deviation map. The
largest uncertainty was found in the eastern part of WCA-2A coinciding
with high TP predictions. The lowest uncertainty was found in the
interior of the marsh extending south and eastwards mirroring the lowest
observed and predicted TP.

To improve predictions of TP we analyzed the relationships between
soil TP, spectral bands and the NDVI. The Spearman Correlation
Coefficient (r) between TP and NDVI was high with 0.65. We used a
stepwise multiple regression to quantify the relationship between soil and
spectral data and derived the following algorithm:

TP ¼ 401:78þ 1890:77 �NDVI with an R2 of 0:37 ðp ¼ 0:001Þ

This linear relationship was used as trend model to predict TP across
WCA-2A using the exhaustive NDVI pixel dataset. We derived residuals
by subtracting the trend model from the observations. The spatially
autocorrelated residuals were then kriged and residual predictions added
to the global trend model to generate the TP prediction map shown in
Fig. 20.9. The RK procedure showed a R2 of 0.93, which was higher than
the one derived for OK (R2 of 0.82). Overall, the TP prediction map
derived from RK showed similar patterns as seen on the OK prediction
map (Fig. 20.5) and the CSGS realization maps (Fig. 20.8). However,
predictions in Fig. 20.9 highlighted landscape features such as vegetative
patterns, slough/ridge systems, open water, tree islands, etc. mapped
through the NDVI index that showed quantitative linkages to soil TP.
Predictions derived from RK do not honor observed data values and have
limitations to describe the uncertainty of predictions. This is the strength
of stochastic simulations that are focused to characterize the uncertainty
of predictions.

In Fig. 20.10 we contrast the different geospatial methods and TP
observations in terms of their distribution functions. Predictions based on
RK and realizations derived from CSGS showed the closest match to the
distribution of TP observations. In particular, the high TP values above
1050mg kg�1 were well represented in the RK and CSGS maps.
20.4. Remarks

Considering the complexity of wetland ecosystems it is essential to
employ spatially distributed sampling designs and geospatial prediction
methods that have the ability to characterize the underlying spatial
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distribution and variability of biogeochemical properties. The integration of
sparse point observations of biogeochemical properties and dense ancillary
environmental datasets has the potential to improve spatially explicit pre-
dictions of properties throughout aquatic (and terrestrial) ecosystems. For
example, remote sensing data are cost-effective and provide exhaustive,
high-resolution information at landscape-scale. In this chapter we focused
on spatially explicit mapping of soil biogeochemical properties exemplified
by TP. The case study demonstrated that OK, IK, RK and CSGS produced
different maps using the same TP observations. All maps are valid in the
sense that they describe the spatial patterns of TP in this specific wetland.
Since different geostatistical methods aim at different goals (e.g., to min-
imize the variance, assess the uncertainty of model predictions, etc.) we have
to use them cautiously. Multi-variate geostatistical and hybrid methods that
incorporate ancillary environmental data to model biogeochemical prop-
erties have much potential to improve our understanding of aquatic and
terrestrial ecosystems. To document the evolution of biogeochemical prop-
erties through time more monitoring programs are in need. Bridging the
gaps between micro, meso and macro spatial scales will be the challenge of
future research in aquatic and terrestrial biogeochemistry.
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